Forest Loss Drivers and Landscape Pressures in a Northern Moroccan Protected Areas’ Network: Introducing a Novel Approach for Conservation Effectiveness Assessment

This study assesses the conservation effectiveness of 21 protected areas (PAs) in Northern Morocco, comprising 3 parks and 18 Sites of Ecological and Biological Interest (SBEIs), against five major landscape pressures (LSPs): deforestation, infrastructure extension, agricultural expansion, fires, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation 2024-09, Vol.4 (3), p.452-485
Hauptverfasser: Boubekraoui, Hamid, Attar, Zineb, Yazid Maouni, Ghallab, Abdelilah, Saidi, Rabah, Maouni, Abdelfettah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study assesses the conservation effectiveness of 21 protected areas (PAs) in Northern Morocco, comprising 3 parks and 18 Sites of Ecological and Biological Interest (SBEIs), against five major landscape pressures (LSPs): deforestation, infrastructure extension, agricultural expansion, fires, and population growth. We propose a novel quantitative methodology using global remote sensing data and exploratory spatial data analysis (ESDA). Data were sourced from Global Forest Change (GFC), Global Land Analysis and Discovery (GLAD), Burned Area Product (MODIS Fire_CCI51), and World Population datasets. The combined impact of the five LSPs was measured using a cumulative effect index (CEI), calculated with the Shannon–Wiener formula at a 1 km2 scale. The CEI was analyzed alongside the distance to the PAs’ network using Moran’s index, identifying four spatial association types: high–high (HH), high–low (HL), low–low (LL), low–high (LH), and non-significant (NS) cells. This analysis defined four zones: inner zone (IZ), potential spillover effect zone (PSEZ), statistically non-significant zone (SNSZ), and non-potential effect zone (NPEZ). Conservation effectiveness was quantified using the conservation ratio (CR), which compared the prevalence of LL versus HL units within IZs and PSEZs. Four disturbance levels (very high, high, medium, and low) were assigned to CR values (0–25%, 25–50%, 50–75%, 75–100%), resulting in sixteen potential conservation effectiveness typologies. Initial findings indicated similar deforestation patterns between protected and unprotected zones, with wildfires causing over half of forest losses within PAs. Conservation effectiveness results categorized the 21 PAs into nine typologies, from high conservation to very high disturbance levels. A significant positive correlation (71%) between CRs in both zones underscored the uniform impact of LSPs, regardless of protection status. However, protected natural area zones in the parks category showed minimal disruption, attributed to their advanced protection status. Finally, we developed a methodological framework for potential application in other regions based on this case study.
ISSN:2673-7159
2673-7159
DOI:10.3390/conservation4030029