Multidisciplinary Design Optimization of Reentry-Powered Hypersonic Vehicles Based on Surrogate Model
Two problems exist in the study of the trajectory optimization problem of powered hypersonic gliding vehicles (HGVs) due to insufficient consideration of the overall design constraints as well as the strong couplings among relevant disciplines: (1) the engine and thrust models are not compatible wit...
Gespeichert in:
Veröffentlicht in: | International Journal of Aerospace Engineering 2024-04, Vol.2024, p.1-17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two problems exist in the study of the trajectory optimization problem of powered hypersonic gliding vehicles (HGVs) due to insufficient consideration of the overall design constraints as well as the strong couplings among relevant disciplines: (1) the engine and thrust models are not compatible with the existing HGV; (2) configuration parameters of the HGV are not included as design variables during trajectory optimization (i.e., propulsion discipline is decoupled in the process of the HGV configuration design), thus failing to fully explore the effect of power to improve the performance of the HGV. Therefore, the application of multidisciplinary design optimization (MDO) in the overall design of powered HGVs should be investigated. First, a MDO task analysis and a multidisciplinary model analysis are carried out for the powered HGV. Second, the multidisciplinary optimization problem is defined, and the couplings between disciplines of the powered HGV are analyzed so that a six-discipline model is established that is suitable for the overall design process, including the parameterized configuration geometry, aerodynamics, propulsion, mass properties, trajectory, and aerodynamic heat/thermal protection system (TPS). Finally, a surrogate model is used to replace the time-consuming accurate model, and numerical optimization examples verify the effectiveness of the method. The optimization results show that the method has a good convergence speed, which increases the gliding range of the optimized vehicle by 8.37%. In addition, by decoupling the propulsion discipline, the validation shows that the coupled propulsion discipline during the overall design can increase the range of the powered HGV by 3.87% compared to the powered HGV optimized with the decoupled propulsion discipline. The work done in this paper provides a new design idea for the overall design of a powered HGV. |
---|---|
ISSN: | 1687-5966 1687-5974 |
DOI: | 10.1155/2024/5557153 |