Assessment of long-term large deformation in deep roadways due to roof fracturing impact loading

The rock mass around deep roadways has obvious creep characteristics in high-stress environments. Meanwhile, the cyclic impact load induced by roof fracturing also causes dynamic damage to the surrounding rock, leading to long-term large deformation. This paper examined the rock mass deformation mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-03, Vol.13 (1), p.3846-3846, Article 3846
Hauptverfasser: Huang, Wanpeng, Golsanami, Naser, Zhang, Chengguo, Canbulat, Ismet, Xin, Guangming, Sun, Gang, Jiang, Lishuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rock mass around deep roadways has obvious creep characteristics in high-stress environments. Meanwhile, the cyclic impact load induced by roof fracturing also causes dynamic damage to the surrounding rock, leading to long-term large deformation. This paper examined the rock mass deformation mechanism around deep roadways based on the theory of rock creep perturbation effect considering perturbation sensitive zone. This study proposed a long-term stability control guideline for deep roadways under dynamic load. An innovative support system was developed for deep roadways, with concrete-filled steel tubular support being recommended as the main supporting body. A case study was conducted to validate the proposed supporting system. Monitoring over one year in the case study mine showed that the overall convergence deformation of the roadway was 35 mm, indicating that the roadway’s long-term large deformation induced by creep perturbation was effectively controlled by using the proposed bearing circle support system.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30792-9