The nuclear envelope localization of DYT1 dystonia torsinA-ΔE requires the SUN1 LINC complex component
DYT1 dystonia is an autosomal dominant neurological condition caused by a mutation that removes a single glutamic acid residue (ΔE) from the torsinA (torA) AAA+ protein. TorA appears to possess a nuclear envelope (NE) localized activity that requires Lamina-Associated-Polypeptide 1 (LAP1), which is...
Gespeichert in:
Veröffentlicht in: | BMC cell biology 2011-05, Vol.12 (1), p.24-24, Article 24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DYT1 dystonia is an autosomal dominant neurological condition caused by a mutation that removes a single glutamic acid residue (ΔE) from the torsinA (torA) AAA+ protein. TorA appears to possess a nuclear envelope (NE) localized activity that requires Lamina-Associated-Polypeptide 1 (LAP1), which is an inner nuclear membrane localized torA-binding partner. Although hypoactive, the DYT1 dystonia torA-ΔE isoform often concentrates in the NE, suggesting that torA-ΔE also interacts with an NE-localized binding partner.
We confirm that NE-localized torA-ΔE does not co-immunoprecipitate with LAP1, and find that torA-ΔE continues to concentrate in the NE of cells that lack LAP1. Instead, we find that variability in torA-ΔE localization correlates with the presence of the SUN-domain and Nesprin proteins that assemble into the LINC complex. We also find that siRNA depletion of SUN1, but not other LINC complex components, removes torA-ΔE from the NE. In contrast, the LAP1-dependent NE-accumulation of an ATP-locked torA mutant is unaffected by loss of LINC complex proteins. This SUN1 dependent torA-ΔE localization requires the torA membrane association domain, as well as a putative substrate-interaction residue, Y147, neither of which are required for torA interaction with LAP1. We also find that mutation of these motifs, or depletion of SUN1, decreases the amount of torA-WT that colocalizes with NE markers, indicating that each also underlies a normal NE-localized torA binding interaction.
These data suggest that the disease causing ΔE mutation promotes an association between torA and SUN1 that is distinct to the interaction between LAP1 and ATP-bound torA. This evidence for two NE-localized binding partners suggests that torA may act on multiple substrates and/or possesses regulatory co-factor partners. In addition, finding that the DYT1 mutation causes abnormal association with SUN1 implicates LINC complex dysfunction in DYT1 dystonia pathogenesis, and suggests a gain-of-function activity contributes to this dominantly inherited disease. |
---|---|
ISSN: | 1471-2121 1471-2121 |
DOI: | 10.1186/1471-2121-12-24 |