Surface operators in $${\mathcal N}=2$$ N = 2 SQCD and Seiberg Duality
Abstract We study half-BPS surface operators in $$\mathcal {N}=2$$ N=2 supersymmetric asymptotically conformal gauge theories in four dimensions with SU(N) gauge group and 2N fundamental flavours using localization methods and coupled 2d/4d quiver gauge theories. We show that contours specified by a...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2019-05, Vol.79 (5), p.1-18, Article 372 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract We study half-BPS surface operators in $$\mathcal {N}=2$$ N=2 supersymmetric asymptotically conformal gauge theories in four dimensions with SU(N) gauge group and 2N fundamental flavours using localization methods and coupled 2d/4d quiver gauge theories. We show that contours specified by a particular Jeffrey–Kirwan residue prescription in the localization analysis map to particular realizations of the surface operator as flavour defects. Seiberg duality of the 2d/4d quivers is mapped to contour deformations of the localization integral which in this case involves a residue at infinity. This is reflected as a modified Seiberg duality rule that shifts the Lagrangian of the purported dual theory by non-perturbative terms. The new rules, that depend on the 4d gauge coupling, lead to a match between the low energy effective twisted chiral superpotentials for any pair of dual 2d/4d quivers. |
---|---|
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-019-6866-5 |