An Interval-Simplex Approach to Determine Technological Parameters from Experimental Data

Statistical equations are widely used to describe the laws of various chemical technological processes. The values of constants and parameters included in these equations are determined by various methods. Methods that can determine the values of equation parameters using a limited amount of experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-08, Vol.10 (16), p.2959
Hauptverfasser: Beloglazov, Ilia, Krylov, Kirill
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Statistical equations are widely used to describe the laws of various chemical technological processes. The values of constants and parameters included in these equations are determined by various methods. Methods that can determine the values of equation parameters using a limited amount of experimental data are of particular practical interest. In this manuscript, we propose a method to obtain simplex-interval equations. The proposed approach can be effectively used to control the values of technological process parameters. In this paper, we consider examples of chemical kinetics equation transformations and heterogeneous processes of solid particle dissolution. In addition, we describes mathematical model transformations, including equations for functions of the residence time distribution (RTD) of apparatus particles, the distribution of particles by size, etc. Finally, we apply the proposed approach to an example involving modeling of the calcination of coke in a tubular rotary kiln.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10162959