Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart

In this study, we apply the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning to control a double inverted pendulum on a cart (DIPC)- a high order single input-multi output (SIMO) system . The simulation results demonstrate DDPG's stability and effectiveness in achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotică şi management (Reșița) 2023-12, Vol.28 (2), p.14-20
Hauptverfasser: Ho, Trong-Nguyen, Tat, Thanh-Sang, Ngo, Hoang-Anh, Nguyen, Truong-Son, Bui, Duc-Anh, Le, Thanh-Trung, Le, Vu-Loc, Huynh, Lac-Thien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we apply the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning to control a double inverted pendulum on a cart (DIPC)- a high order single input-multi output (SIMO) system . The simulation results demonstrate DDPG's stability and effectiveness in achieving swing-up and balance, showing its potential for tackling challenging control tasks in robotics.
ISSN:1453-2069
2359-9855
DOI:10.24193/rm.2023.2.3