Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart
In this study, we apply the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning to control a double inverted pendulum on a cart (DIPC)- a high order single input-multi output (SIMO) system . The simulation results demonstrate DDPG's stability and effectiveness in achie...
Gespeichert in:
Veröffentlicht in: | Robotică şi management (Reșița) 2023-12, Vol.28 (2), p.14-20 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we apply the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning to control a double inverted pendulum on a cart (DIPC)- a high order single input-multi output (SIMO) system . The simulation results demonstrate DDPG's stability and effectiveness in achieving swing-up and balance, showing its potential for tackling challenging control tasks in robotics. |
---|---|
ISSN: | 1453-2069 2359-9855 |
DOI: | 10.24193/rm.2023.2.3 |