Machine Learning Model Based on Radiomic Features for Differentiation between COVID-19 and Pneumonia on Chest X-ray

Machine learning approaches are employed to analyze differences in real-time reverse transcription polymerase chain reaction scans to differentiate between COVID-19 and pneumonia. However, these methods suffer from large training data requirements, unreliable images, and uncertain clinical diagnosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (17), p.6709
1. Verfasser: Kim, Young Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning approaches are employed to analyze differences in real-time reverse transcription polymerase chain reaction scans to differentiate between COVID-19 and pneumonia. However, these methods suffer from large training data requirements, unreliable images, and uncertain clinical diagnosis. Thus, in this paper, we used a machine learning model to differentiate between COVID-19 and pneumonia via radiomic features using a bias-minimized dataset of chest X-ray scans. We used logistic regression (LR), naive Bayes (NB), support vector machine (SVM), k-nearest neighbor (KNN), bagging, random forest (RF), extreme gradient boosting (XGB), and light gradient boosting machine (LGBM) to differentiate between COVID-19 and pneumonia based on training data. Further, we used a grid search to determine optimal hyperparameters for each machine learning model and 5-fold cross-validation to prevent overfitting. The identification performances of COVID-19 and pneumonia were compared with separately constructed test data for four machine learning models trained using the maximum probability, contrast, and difference variance of the gray level co-occurrence matrix (GLCM), and the skewness as input variables. The LGBM and bagging model showed the highest and lowest performances; the GLCM difference variance showed a high overall effect in all models. Thus, we confirmed that the radiomic features in chest X-rays can be used as indicators to differentiate between COVID-19 and pneumonia using machine learning.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22176709