Combined effects of micropollutants and their degradation on prokaryotic communities at the sediment–water interface

Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-07, Vol.14 (1), p.16840-15, Article 16840
Hauptverfasser: Borreca, Adrien, Vuilleumier, Stéphane, Imfeld, Gwenaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment–water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment–water interfaces affected by multiple contaminants.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-67308-y