Sperm motility assessed by deep convolutional neural networks into WHO categories

Semen analysis is central in infertility investigation. Manual assessment of sperm motility according to the WHO recommendations is the golden standard, and extensive training is a requirement for accurate and reproducible results. Deep convolutional neural networks (DCNN) are especially suitable fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-09, Vol.13 (1), p.14777-14777, Article 14777
Hauptverfasser: Haugen, Trine B., Witczak, Oliwia, Hicks, Steven A., Björndahl, Lars, Andersen, Jorunn M., Riegler, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semen analysis is central in infertility investigation. Manual assessment of sperm motility according to the WHO recommendations is the golden standard, and extensive training is a requirement for accurate and reproducible results. Deep convolutional neural networks (DCNN) are especially suitable for image classification. In this study, we evaluated the performance of the DCNN ResNet-50 in predicting the proportion of sperm in the WHO motility categories. Two models were evaluated using tenfold cross-validation with 65 video recordings of wet semen preparations from an external quality assessment programme for semen analysis. The corresponding manually assessed data was obtained from several of the reference laboratories, and the mean values were used for training of the DCNN models. One model was trained to predict the three categories progressive motility, non-progressive motility, and immotile spermatozoa. Another model was used in predicting four categories, where progressive motility was differentiated into rapid and slow. The resulting average mean absolute error (MAE) was 0.05 and 0.07, and the average ZeroR baseline was 0.09 and 0.10 for the three-category and the four-category model, respectively. Manual and DCNN-predicted motility was compared by Pearson’s correlation coefficient and by difference plots. The strongest correlation between the mean manually assessed values and DCNN-predicted motility was observed for % progressively motile spermatozoa (Pearson’s r = 0.88, p 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-41871-2