A Novel Fiber-Optic Ice Sensor to Identify Ice Types Based on Total Reflection
To address the issues of not accurately identifying ice types and thickness in current fiber-optic ice sensors, in this paper, we design a novel fiber-optic ice sensor based on the reflected light intensity modulation method and total reflection principle. The performance of the fiber-optic ice sens...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-04, Vol.23 (8), p.3996 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the issues of not accurately identifying ice types and thickness in current fiber-optic ice sensors, in this paper, we design a novel fiber-optic ice sensor based on the reflected light intensity modulation method and total reflection principle. The performance of the fiber-optic ice sensor was simulated by ray tracing. The low-temperature icing tests validated the performance of the fiber-optic ice sensor. It is shown that the ice sensor can detect different ice types and the thickness from 0.5 to 5 mm at temperatures of -5 °C, -20 °C, and -40 °C. The maximum measurement error is 0.283 mm. The proposed ice sensor provides promising applications in aircraft and wind turbine icing detection. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23083996 |