Condition monitoring of urban rail transit by local energy harvesting

The goal of this study is to develop a vibration-based electromagnetic energy harvesting prototype that provides power to rail-side monitoring equipment and sensors by collecting wheel-rail vibration energy when the train travels. This technology helps power rail–side equipment in off-grid and remot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks 2018-11, Vol.14 (11), p.155014771881446
Hauptverfasser: Gao, Mingyuan, Li, Yunwu, Lu, Jun, Wang, Yifeng, Wang, Ping, Wang, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this study is to develop a vibration-based electromagnetic energy harvesting prototype that provides power to rail-side monitoring equipment and sensors by collecting wheel-rail vibration energy when the train travels. This technology helps power rail–side equipment in off-grid and remote areas. This article introduces the principle, modeling, and experimental test of the system, including (1) an electromagnetic energy harvesting prototype with DC-DC boost converter and lithium battery charge management function, (2) wireless sensor nodes integrated with accelerometer and temperature/humidity sensor, and (3) a vehicle-track interaction model that considers wheel out-of-roundness. Field test results, power consumption, Littlewood–Paley wavelet transform method, and feasibility analysis are reported. An application case of the technology is introduced: the sensor nodes of the wireless sensor network are powered by the electromagnetic energy harvester and lithium battery with DC-DC boost converter, thereby continuously monitoring the railway track state; based on the Littlewood–Paley wavelet analysis of measured railway track acceleration data, the abnormal signal caused by the wheel out-of-roundness can be detected.
ISSN:1550-1477
1550-1477
DOI:10.1177/1550147718814469