Type Synthesis Based on Modular Combination with Virtual Rotation Center and Application

Type synthesis of mechanical structure is of great significance to the realization of mechanism target function, systematization, and stability of mechanical device. The type synthesis method of multilinkage robot has been given high demands with increasing number of degrees of freedom and high flex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rotating machinery 2022, Vol.2022, p.1-17
Hauptverfasser: Li, Xinning, Zhang, Qishuo, Zhang, Zongsu, Yang, Xianhai, Wu, Hu, Li, Yongbo, Qu, Hailong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Type synthesis of mechanical structure is of great significance to the realization of mechanism target function, systematization, and stability of mechanical device. The type synthesis method of multilinkage robot has been given high demands with increasing number of degrees of freedom and high flexibility in special occasions. In order to improve the workspace and flexibility of mechanism, this paper studies the existing type synthesis theory and proposes a type synthesis method of modular combination with virtual rotation centers. Firstly, modular units are built. Secondly, modular units are expanded according to the needed paths. In the end, the expanded modular units are combined to form the kinematic linkages. Based on the proposed method, the configuration design of the aerial working platform and the self-adaptive levelling platform is completed. The stabilities of two platforms are checked by modal analysis. The prototype products are manufactured, respectively, for further verifying validity of the method. The designed aerial working platform with virtual rotation centers can achieve 360° rotating large workspace, more compact mechanical structure, and short arrival time at the same height than the common scissor-type and mast-type aerial working platforms. The designed adaptive levelling platform is tested that ensures the levelling of the upper surface at different inclinations. The method can provide new idea for the mechanism configuration and expand the application scope of new mechanisms.
ISSN:1023-621X
1542-3034
DOI:10.1155/2022/5216327