On the spectrum of the finite element approximation of a three field formulation for linear elasticity

We continue the investigation on the spectrum of operators arising from the discretization of partial differential equations. In this paper we consider a three field formulation recently introduced for the finite element least-squares approximation of linear elasticity. We discuss in particular the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Examples and counterexamples 2022-11, Vol.2, p.100076, Article 100076
Hauptverfasser: Alzaben, Linda, Bertrand, Fleurianne, Boffi, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We continue the investigation on the spectrum of operators arising from the discretization of partial differential equations. In this paper we consider a three field formulation recently introduced for the finite element least-squares approximation of linear elasticity. We discuss in particular the distribution of the discrete eigenvalues in the complex plane and how they approximate the positive real eigenvalues of the continuous problem. The dependence of the spectrum on the Lamé parameters is considered as well and its behavior when approaching the incompressible limit.
ISSN:2666-657X
2666-657X
DOI:10.1016/j.exco.2022.100076