Navigation and Control of Motion Modes with Soft Microrobots at Low Reynolds Numbers
This study investigates the motion characteristics of soft alginate microrobots in complex fluidic environments utilizing wireless magnetic fields for actuation. The aim is to explore the diverse motion modes that arise due to shear forces in viscoelastic fluids by employing snowman-shaped microrobo...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2023-06, Vol.14 (6), p.1209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigates the motion characteristics of soft alginate microrobots in complex fluidic environments utilizing wireless magnetic fields for actuation. The aim is to explore the diverse motion modes that arise due to shear forces in viscoelastic fluids by employing snowman-shaped microrobots. Polyacrylamide (PAA), a water-soluble polymer, is used to create a dynamic environment with non-Newtonian fluid properties. Microrobots are fabricated via an extrusion-based microcentrifugal droplet method, successfully demonstrating the feasibility of both wiggling and tumbling motions. Specifically, the wiggling motion primarily results from the interplay between the viscoelastic fluid environment and the microrobots' non-uniform magnetization. Furthermore, it is discovered that the viscoelasticity properties of the fluid influence the motion behavior of the microrobots, leading to non-uniform behavior in complex environments for microrobot swarms. Through velocity analysis, valuable insights into the relationship between applied magnetic fields and motion characteristics are obtained, facilitating a more realistic understanding of surface locomotion for targeted drug delivery purposes while accounting for swarm dynamics and non-uniform behavior. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14061209 |