Generalizing the Black and Scholes Equation Assuming Differentiable Noise

This article develops probability equations for an asset value through time, assuming continuous correlated differentiable Gaussian distributed noise. Ito’s (1944) stochastic integral and a generalized Novikov’s (1919) theorem are used. As an example, the mathematical model is used to generalize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics 2024-01, Vol.2024 (1)
Hauptverfasser: Hausken, Kjell, Moxnes, John F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article develops probability equations for an asset value through time, assuming continuous correlated differentiable Gaussian distributed noise. Ito’s (1944) stochastic integral and a generalized Novikov’s (1919) theorem are used. As an example, the mathematical model is used to generalize the Black and Scholes’ (1973) equation for pricing financial instruments. The article connects the Kolmogorov (1931) probability equation to arbitrage and to how financial instruments are priced, where more generally, the mathematical model based on differentiable noise may improve or be an alternative for forecasts. The article contrasts with much of the literature which assumes continuous nondifferentiable uncorrelated Gaussian distributed white noise.
ISSN:1110-757X
1687-0042
DOI:10.1155/2024/8906248