Integrated drug resistance and leukemic stemness gene-expression scores predict outcomes in large cohort of over 3500 AML patients from 10 trials

In this study, we leveraged machine-learning tools by evaluating expression of genes of pharmacological relevance to standard-AML chemotherapy (ara-C/daunorubicin/etoposide) in a discovery-cohort of pediatric AML patients ( N  = 163; NCT00136084 ) and defined a 5-gene-drug resistance score (ADE-RS5)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ precision oncology 2024-08, Vol.8 (1), p.168-12, Article 168
Hauptverfasser: H. Elsayed, Abdelrahman, Cao, Xueyuan, Marrero, Richard J., Nguyen, Nam H. K., Wu, Huiyun, Ni, Yonhui, Ribeiro, Raul C., Tobias, Herold, Valk, Peter J., Béliveau, François, Richard-Carpentier, Guillaume, Hébert, Josée, Zwaan, C. Michel, Gamis, Alan, Kolb, Edward Anders, Aplenc, Richard, Alonzo, Todd A., Meshinchi, Soheil, Rubnitz, Jeffrey, Pounds, Stanley, Lamba, Jatinder K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we leveraged machine-learning tools by evaluating expression of genes of pharmacological relevance to standard-AML chemotherapy (ara-C/daunorubicin/etoposide) in a discovery-cohort of pediatric AML patients ( N  = 163; NCT00136084 ) and defined a 5-gene-drug resistance score (ADE-RS5) that was predictive of outcome (high MRD1 positivity p  = 0.013; lower EFS p  
ISSN:2397-768X
2397-768X
DOI:10.1038/s41698-024-00643-5