A tutorial on Federated Learning methodology for indoor localization with non-IID fingerprint databases

This paper presents a tutorial on Deep Learning (DL) with Federated Learning (FL)-based indoor localization method for non-Independently and Identically Distributed (non-IID) fingerprinting databases. To this end, this paper explains systematic approaches for addressing privacy concerns and performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2023-08, Vol.9 (4), p.548-555
Hauptverfasser: Jeong, Minsoo, Choi, Sang Won, Kim, Sunwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a tutorial on Deep Learning (DL) with Federated Learning (FL)-based indoor localization method for non-Independently and Identically Distributed (non-IID) fingerprinting databases. To this end, this paper explains systematic approaches for addressing privacy concerns and performance degradation issues in non-IID fingerprinting databases. The method presented in this tutorial entails the application of a personalized layer, model reliability, and Layer-wise local model’s Weight Change (LWC) information to FL. This tutorial provides intuitions to be considered by future researchers to improve the performance of FL-based fingerprinting localization by summarizing the above-mentioned methods into three FL-based techniques: high-complexity training for performance improvement of local training models, exact characteristics of the local model for global model aggregation, and Bayesian data fusion for probabilistic clustering, to improve FL-based indoor localization performance.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2023.01.009