Majorization inequalities via Green functions and Fink’s identity with applications to Shannon entropy
This paper is devoted to obtain generalized results related to majorization-type inequalities by using well-known Fink’s identity and new types of Green functions, introduced by Mehmood et al. (J. Inequal. Appl. 2017:108, 2017 ). We give a generalized majorization theorem for the class of n -convex...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2020-07, Vol.2020 (1), p.1-14, Article 192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to obtain generalized results related to majorization-type inequalities by using well-known Fink’s identity and new types of Green functions, introduced by Mehmood et al. (J. Inequal. Appl. 2017:108,
2017
). We give a generalized majorization theorem for the class of
n
-convex functions. We utilize the Csiszár
f
-divergence and generalized majorization-type inequalities in providing the corresponding generalizations. As an application, we present the obtained results in terms of Shannon entropy and Kullback–Leibler distance. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-020-02455-0 |