Strike: Stream Cipher Based on Stochastic Lightning Strike Behaviour
There is an increasing need for secure and fast encryption algorithms to support applications and communication protocols, and business models. In this paper, we present an alternative stream cipher (Strike) inspired by the stochastic behaviour of lightning strike phenomena. The novelty and original...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-04, Vol.13 (8), p.4669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is an increasing need for secure and fast encryption algorithms to support applications and communication protocols, and business models. In this paper, we present an alternative stream cipher (Strike) inspired by the stochastic behaviour of lightning strike phenomena. The novelty and originality of Strike stem from the utilisation of lightning strike behaviour as a source for generating random keystreams for encryption and decryption. Strike consists of three main functions: a function for setting up the security attributes, a function for generating lightning strikes and converting them to a keystream, and a function for plaintext encryption. The proposed stream cipher was tested against several cryptanalysis and statistical attacks in addition to other performance tests. The results show that Strike achieves high throughput on both high- and low-speed devices. Additionally, security analysis shows that our cipher is resistant to cryptanalysis and statistical attacks. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13084669 |