Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy
Accurate and frequent monitoring of evapotranspiration (ET) at sub-field scales can provide valuable information for agricultural water management, quantifying crop water use and stress toward the goal of increasing crop water use efficiency and production. Using land-surface temperature (LST) data...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-09, Vol.13 (17), p.3420 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate and frequent monitoring of evapotranspiration (ET) at sub-field scales can provide valuable information for agricultural water management, quantifying crop water use and stress toward the goal of increasing crop water use efficiency and production. Using land-surface temperature (LST) data retrieved from Landsat thermal infrared (TIR) imagery, along with surface reflectance data describing albedo and vegetation cover fraction, surface energy balance models can generate ET maps down to a 30 m spatial resolution. However, the temporal sampling by such maps can be limited by the relatively infrequent revisit period of Landsat data (8 days for combined Landsats 7 and 8), especially in cloudy areas experiencing rapid changes in moisture status. The Sentinel-2 (S2) satellites, as a good complement to the Landsat system, provide surface reflectance data at 10–20 m spatial resolution and 5 day revisit period but do not have a thermal sensor. On the other hand, the Visible Infrared Imaging Radiometer Suite (VIIRS) provides TIR data on a near-daily basis with 375 m resolution, which can be refined through thermal sharpening using S2 reflectances. This study assesses the utility of augmenting the Harmonized Landsat and Sentinel-2 (HLS) dataset with S2-sharpened VIIRS as a thermal proxy source on S2 overpass days, enabling 30 m ET mapping at a potential combined frequency of 2–3 days (including Landsat). The value added by including VIIRS-S2 is assessed both retrospectively and operationally in comparison with flux tower observations collected from several U.S. agricultural sites covering a range of crop types. In particular, we evaluate the performance of VIIRS-S2 ET estimates as a function of VIIRS view angle and cloud masking approach. VIIRS-S2 ET retrievals (MAE of 0.49 mm d−1 against observations) generally show comparable accuracy to Landsat ET (0.45 mm d−1) on days of commensurate overpass, but with decreasing performance at large VIIRS view angles. Low-quality VIIRS-S2 ET retrievals linked to imperfect VIIRS/S2 cloud masking are also discussed, and caution is required when applying such data for generating ET timeseries. Fused daily ET time series benefited during the peak growing season from the improved multi-source temporal sampling afforded by VIIRS-S2, particularly in cloudy regions and over surfaces with rapidly changing vegetation conditions, and value added for real-time monitoring applications is discussed. This work demonstrates the utility |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13173420 |