Color image splicing localization algorithm by quaternion fully convolutional networks and superpixel-enhanced pairwise conditional random field

Recently, fully convolutional network (FCN) has been successfully used to locate spliced regions in synthesized images. However, all the existing FCN-based algorithms use real-valued FCN to process each channel separately. As a consequence, they fail to capture the inherent correlation between color...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences and engineering : MBE 2019-01, Vol.16 (6), p.6907-6922
Hauptverfasser: Chen, Bei Jing, Gao, Ye, Xu, Ling Zheng, Hong, Xiao Peng, Zheng, Yu Hui, Shi, Yun-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, fully convolutional network (FCN) has been successfully used to locate spliced regions in synthesized images. However, all the existing FCN-based algorithms use real-valued FCN to process each channel separately. As a consequence, they fail to capture the inherent correlation between color channels and the integrity of three channels. So, in this paper, quaternion fully convolutional network (QFCN) is proposed to generalize FCN to quaternion domain by replacing real-valued conventional blocks in FCN with quaternion conventional blocks. In addition, a new color image splicing localization algorithm is proposed by combining QFCNs and superpixel (SP)-enhanced pairwise conditional random field (CRF). QFCNs consider three different versions (QFCN32, QFCN16, and QFCN8) with different up-sampling layers. The SP-enhanced pairwise CRF is used to refine the results of QFCNs. Experimental results on three publicly available datasets demonstrate that the proposed algorithm outperforms the existing algorithms including some conventional algorithms and some deep learning-based algorithms.
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2019346