Using Public Landslide Inventories for Landslide Susceptibility Assessment at the Basin Scale: Application to the Torto River Basin (Central-Northern Sicily, Italy)

In statistical landslide susceptibility evaluation, the quality of the model and its prediction image heavily depends on the quality of the landslide inventories used for calibration. However, regional-scale inventories made available by public territorial administrations are typically affected by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-08, Vol.13 (16), p.9449
Hauptverfasser: Martinello, Chiara, Mercurio, Claudio, Cappadonia, Chiara, Bellomo, Viviana, Conte, Andrea, Mineo, Giampiero, Di Frisco, Giulia, Azzara, Grazia, Bufalini, Margherita, Materazzi, Marco, Rotigliano, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In statistical landslide susceptibility evaluation, the quality of the model and its prediction image heavily depends on the quality of the landslide inventories used for calibration. However, regional-scale inventories made available by public territorial administrations are typically affected by an unknown grade of incompleteness and mapping inaccuracy. In this research, a procedure is proposed for verifying and solving such limits by applying a two-step susceptibility modeling procedure. In the Torto River basin (central-northern Sicily, Italy), using an available regional landslide inventory (267 slide and 78 flow cases), two SUFRA_1 models were first prepared and used to assign a landslide susceptibility level to each slope unit (SLU) in which the study area was partitioned. For each of the four susceptibility classes that were obtained, 30% of the mapping units were randomly selected and their stable/unstable status was checked by remote analysis. The new, increased inventories were finally used to recalibrate two SUFRA_2 models. The prediction skills of the SUFRA_1 and SUFRA_2 models were then compared by testing their accuracy in matching landslide distribution in a test sub-basin where a high-resolution systematic inventory had been prepared. According to the results, the strong limits of the SUFRA_1 models (sensitivity: 0.67 and 0.57 for slide and flow, respectively) were largely solved by the SUFRA_2 model (sensitivity: 1 for both slide and flow), suggesting the proposed procedure as a possibly suitable modeling strategy for regional susceptibility studies.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13169449