Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice
In this paper, we generalize the notion of principal ideal (resp. filter) on a lattice to the setting of intuitionistic fuzzy sets and investigate their various characterizations and properties. More specifically, we show that any principal intuitionistic fuzzy ideal (resp. filter) coincides with an...
Gespeichert in:
Veröffentlicht in: | Discussiones mathematicae. General algebra and applications 2020-06, Vol.40 (1), p.75-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we generalize the notion of principal ideal (resp. filter) on a lattice to the setting of intuitionistic fuzzy sets and investigate their various characterizations and properties. More specifically, we show that any principal intuitionistic fuzzy ideal (resp. filter) coincides with an intuitionistic fuzzy down-set (resp. up-set) generated by an intuitionistic fuzzy singleton. Afterwards, for a given intuitionistic fuzzy set, we introduce two intuitionistic fuzzy sets: its intuitionistic fuzzy down-set and up-set, and we investigate their interesting properties. |
---|---|
ISSN: | 1509-9415 2084-0373 |
DOI: | 10.7151/dmgaa.1325 |