Effects of Carbon Nanowalls (CNWs) Substrates on Soft Ionization of Low-Molecular-Weight Organic Compounds in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS)
Carbon nanowalls (CNWs), which are vertically oriented multi-layer graphene sheets, were employed in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) measurements to detect low-molecular-weight organic compounds. CNWs substrates with widely different wall-to-wall distances f...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-01, Vol.11 (2), p.262 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon nanowalls (CNWs), which are vertically oriented multi-layer graphene sheets, were employed in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) measurements to detect low-molecular-weight organic compounds. CNWs substrates with widely different wall-to-wall distances from 142 to 467 nm were synthesized using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with nanosecond pulse biasing to a sample stage. When survival yield (SY) values of N-benzylpyridinium chloride (N-BP-Cl) were examined, which is commonly used to evaluate desorption/ionization efficiency, a narrower wall-to-wall distance presented a higher SY value. The highest SY value of 0.97 was realized at 4 mJ/cm2 for the highest-density CNWs with a wall-to-wall distance of 142 nm. The laser desorption/ionization effect of arginine, an amino acid, was also investigated. When CNWs with a narrower wall-to-wall distance were used, the signal-to-noise (SN) ratios of the arginine signals were increased, while the intensity ratios of fragment ions to arginine signals were suppressed. Therefore, the CNWs nanostructures are a powerful tool when used as a SALDI substrate for the highly efficient desorption/ionization of low-molecular-weight biomolecules. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano11020262 |