Application of Spatial Analysis on Electronic Health Records to Characterize Patient Phenotypes: Systematic Review
Electronic health records (EHRs) commonly contain patient addresses that provide valuable data for geocoding and spatial analysis, enabling more comprehensive descriptions of individual patients for clinical purposes. Despite the widespread use of EHRs in clinical decision support and interventions,...
Gespeichert in:
Veröffentlicht in: | JMIR Medical Informatics 2024-10, Vol.12, p.e56343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic health records (EHRs) commonly contain patient addresses that provide valuable data for geocoding and spatial analysis, enabling more comprehensive descriptions of individual patients for clinical purposes. Despite the widespread use of EHRs in clinical decision support and interventions, no systematic review has examined the extent to which spatial analysis is used to characterize patient phenotypes.
This study reviews advanced spatial analyses that used individual-level health data from EHRs within the United States to characterize patient phenotypes.
We systematically evaluated English-language, peer-reviewed studies from the PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar databases from inception to August 20, 2023, without imposing constraints on study design or specific health domains.
A substantial proportion of studies (>85%) were limited to geocoding or basic mapping without implementing advanced spatial statistical analysis, leaving only 49 studies that met the eligibility criteria. These studies used diverse spatial methods, with a predominant focus on clustering techniques, while spatiotemporal analysis (frequentist and Bayesian) and modeling were less common. A noteworthy surge (n=42, 86%) in publications was observed after 2017. The publications investigated a variety of adult and pediatric clinical areas, including infectious disease, endocrinology, and cardiology, using phenotypes defined over a range of data domains such as demographics, diagnoses, and visits. The primary health outcomes investigated were asthma, hypertension, and diabetes. Notably, patient phenotypes involving genomics, imaging, and notes were limited.
This review underscores the growing interest in spatial analysis of EHR-derived data and highlights knowledge gaps in clinical health, phenotype domains, and spatial methodologies. We suggest that future research should focus on addressing these gaps and harnessing spatial analysis to enhance individual patient contexts and clinical decision support. |
---|---|
ISSN: | 2291-9694 2291-9694 |
DOI: | 10.2196/56343 |