Of Cores: A Partial-Exploration Framework for Markov Decision Processes

We introduce a framework for approximate analysis of Markov decision processes (MDP) with bounded-, unbounded-, and infinite-horizon properties. The main idea is to identify a "core" of an MDP, i.e., a subsystem where we provably remain with high probability, and to avoid computation on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science 2020-01, Vol.16, Issue 4
Hauptverfasser: Jan Křetínský, Tobias Meggendorfer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a framework for approximate analysis of Markov decision processes (MDP) with bounded-, unbounded-, and infinite-horizon properties. The main idea is to identify a "core" of an MDP, i.e., a subsystem where we provably remain with high probability, and to avoid computation on the less relevant rest of the state space. Although we identify the core using simulations and statistical techniques, it allows for rigorous error bounds in the analysis. Consequently, we obtain efficient analysis algorithms based on partial exploration for various settings, including the challenging case of strongly connected systems.
ISSN:1860-5974
DOI:10.23638/LMCS-16(4:3)2020