Biological and genomic characterization of a polyvalent phage PSH-1 against multidrug-resistant Salmonella Enteritidis
Bacteriophage has been renewed attention as a new antibacterial agent due to the limitations of antibiotic treatment. Bacteriophages are generally thought to be highly host specific and even strain specific, but a small number of polyvalent bacteriophages have been found to infect bacteria of differ...
Gespeichert in:
Veröffentlicht in: | BMC microbiology 2024-09, Vol.24 (1), p.349-12, Article 349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacteriophage has been renewed attention as a new antibacterial agent due to the limitations of antibiotic treatment. Bacteriophages are generally thought to be highly host specific and even strain specific, but a small number of polyvalent bacteriophages have been found to infect bacteria of different genera.
In this study, a virulent lytic bacteriophage (named Salmonella phage PSH-1) of Salmonella Enteritidis was isolated from the sewage samples of a large-scale pig farm, PSH-1 demonstrated lytic activity against four multidrug-resistant Salmonella Enteritidis isolates and Escherichia coli, and then its biological characteristics, genome and bacteriostatic ability were investigated. The results showed that the initial titer of PSH-1 was 1.15 × 10
PFU/mL and the optimal multiplicity of infection (MOI) was 0.01, PSH-1 has stable activity in the range of pH 3.0-11.0. One-step growth curve showed that its latent period was 20 min, burst time was 80 min, and the burst was 495 particles. The whole-genome sequencing results revealed phage PSH-1 had a linear dsDNA with 48,466 bp length. The G/C content was 45.33%. Non-coding RNA genes and virulence factors were not found. Eighty- five open reading frames (ORFs) were identified after online annotation. By tests, the use of phage could succeed in controlling the artificial Salmonella contamination in milk at a range of temperatures.
This study reports a novel Salmonella Enteritidis phage PSH-1, which has a robust lytic ability, no virulence factors, and good stability. The characterization and genomic analysis of PSH-1 will develop our understanding of phage biology and diversity and provide a potential arsenal for controlling of salmonellosis. |
---|---|
ISSN: | 1471-2180 1471-2180 |
DOI: | 10.1186/s12866-024-03489-w |