Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
We consider a stabilized multiscale nonconforming finite element method for the two-dimensional stationary incompressible Navier-Stokes problem. This method is based on the enrichment of the standard polynomial space for the velocity component with multiscale function and the nonconforming lowest eq...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.97-123-508 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a stabilized multiscale nonconforming finite element method for the two-dimensional stationary incompressible Navier-Stokes problem. This method is based on the enrichment of the standard polynomial space for the velocity component with multiscale function and the nonconforming lowest equal-order finite element pair. Stability and existence uniqueness of the numerical solution are established, optimal-order error estimates are also presented. Finally, some numerical results are presented to validate the performance of the proposed method. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2012/651808 |