Thermodynamics of 5D charged rotating black holes: a counterterms treatment
We use the counterterms subtraction method to calculate various thermodynamical quantities for charged rotating black holes in five-dimensional minimal gauged supergravity (Chong et al. in Phys Rev Lett 95:161301, 2005, https://doi.org/10.1103/PhysRevLett.95.161301 , arXiv:hep-th/0506029 ). Specific...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2023-03, Vol.83 (3), p.187-14, Article 187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the counterterms subtraction method to calculate various thermodynamical quantities for charged rotating black holes in five-dimensional minimal gauged supergravity (Chong et al. in Phys Rev Lett 95:161301, 2005,
https://doi.org/10.1103/PhysRevLett.95.161301
,
arXiv:hep-th/0506029
). Specifically, we analyze certain issues related to the first law and Smarr’s relation in the presence of a conformal anomaly. Among the bulk quantities calculated are the on-shell action, total mass, and angular momenta of the solution. All these quantities are consistent with previous calculations made using other methods. For the boundary theory, we calculate the renormalized stress tensor, conformal anomaly, and Casimir energy. Using the Papadimitriou–Skenderis analysis (Papadimitriou and Skenderis in J High Energy Phys 08:004, 2005), we show that the mass calculated via the counterterms method satisfies the first law of black hole thermodynamics. To discuss extended thermodynamics, we extend the definition of the thermodynamic volume to cases with conformal anomalies using a procedure similar to that of Papadimitriou–Skenderis. We show that this volume correctly accounts for extra terms due to boundary metric variation. This shows that the mass and volume calculated using counterterms satisfy Smarr’s relation as well as the first law. |
---|---|
ISSN: | 1434-6052 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-023-11335-y |