Hyperbolic Asynchronous Method of a Radio Navigation Technique
Humans have always wanted to determine positions in an unknown environment. At the beginning, methods were simple. They were based on the observation of characteristic points—in the case of shipping, additional observations of the coastline. Then came navigation based on astronomical methods (astron...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-09, Vol.10 (18), p.6316 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Humans have always wanted to determine positions in an unknown environment. At the beginning, methods were simple. They were based on the observation of characteristic points—in the case of shipping, additional observations of the coastline. Then came navigation based on astronomical methods (astronavigation). At the beginning of the XX-th century, a new way of determining the current location was developed. It used radio wave signals. First came radio beacons, then ground-based systems. Currently, satellite systems are being used. At present, the most popular one is the Global Positioning System (GPS). This system is fully controlled by the Department of Defense, and only the U.S. forces and their closest allies have been guaranteed the accuracy offered by the system. Armies of other countries can only use the civilian version. This situation has engendered the need for an independent radiolocation system. This article describes the construction and operation of such a technology demonstrator that was developed at Gdansk University of Technology. The main advantage of the system is the ability to manage it without the chain organization of the reference stations, which currently work with each other asynchronously. This article demonstrates the functionality of such a system. It also presents results and analysis of its effectiveness. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10186316 |