Anticancer Effect by Combined Treatment of Artemisia annua L. Polyphenols and Docetaxel in DU145 Prostate Cancer Cells and HCT116 Colorectal Cancer Cells

Docetaxel (DTX), a semi-synthetic analogue of paclitaxel (taxol), is known to exert potent anticancer activity in various cancer cells by suppressing normal microtubule dynamics. In this study, we examined how the anticancer effect of DTX is regulated by polyphenols extracted from Korean L. (pKAL) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current issues in molecular biology 2024-02, Vol.46 (2), p.1621-1634
Hauptverfasser: Jung, Eun Joo, Kim, Hye Jung, Shin, Sung Chul, Kim, Gon Sup, Jung, Jin-Myung, Hong, Soon Chan, Chung, Ky Hyun, Kim, Choong Won, Lee, Won Sup
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Docetaxel (DTX), a semi-synthetic analogue of paclitaxel (taxol), is known to exert potent anticancer activity in various cancer cells by suppressing normal microtubule dynamics. In this study, we examined how the anticancer effect of DTX is regulated by polyphenols extracted from Korean L. (pKAL) in DU145 prostate cancer cells (mutant p53) and HCT116 colorectal cancer cells (wild-type p53). Here, we show that the anticancer effect of DTX was enhanced more significantly by pKAL in HCT116 cells than in DU145 cells via phase-contrast microscopy, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/propidium iodide-stained cells. Notably, mutant p53 was slightly downregulated by single treatment of pKAL or DTX in DU145 cells, whereas wild-type p53 was significantly upregulated by pKAL or DTX in HCT116 cells. Moreover, the enhanced anticancer effect of DTX by pKAL in HCT116 cells was significantly associated with the suppression of DTX-induced p53 upregulation, increase of DTX-induced phospho-p38, and decrease of DTX-regulated cyclin A, cyclin B1, AKT, caspase-8, PARP1, GM130, NF-κB p65, and LDHA, leading to the increased apoptotic cell death and plasma membrane permeability. Our results suggest that pKAL could effectively improve the anticancer effect of DTX-containing chemotherapy used to treat various cancers expressing wild-type p53.
ISSN:1467-3045
1467-3037
1467-3045
DOI:10.3390/cimb46020105