Fine-Grained Algorithm for Improving KNN Computational Performance on Clinical Trials Text Classification

Text classification is an important component in many applications. Text classification has attracted the attention of researchers to continue to develop innovations and build new classification models that are sourced from clinical trial texts. In building classification models, many methods are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Big data and cognitive computing 2021-12, Vol.5 (4), p.60
Hauptverfasser: Jasmir, Jasmir, Nurmaini, Siti, Tutuko, Bambang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Text classification is an important component in many applications. Text classification has attracted the attention of researchers to continue to develop innovations and build new classification models that are sourced from clinical trial texts. In building classification models, many methods are used, including supervised learning. The purpose of this study is to improve the computational performance of one of the supervised learning methods, namely KNN, in building a clinical trial document text classification model by combining KNN and the fine-grained algorithm. This research contributed to increasing the computational performance of KNN from 388,274 s to 260,641 s in clinical trial texts on a clinical trial text dataset with a total of 1,000,000 data.
ISSN:2504-2289
2504-2289
DOI:10.3390/bdcc5040060