Hyperspectral Data for Early Identification and Classification of Potassium Deficiency in Soybean Plants (Glycine max (L.) Merrill)

Identifying potassium (K+) deficiency in plants has traditionally been a difficult and expensive process. Traditional methods involve inspecting leaves for symptoms and conducting a laboratory analysis. These methods are not only time-consuming but also use toxic reagents. Additionally, the analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-06, Vol.16 (11), p.1900
Hauptverfasser: Furlanetto, Renato Herrig, Crusiol, Luís Guilherme Teixeira, Nanni, Marcos Rafael, de Oliveira Junior, Adilson, Sibaldelli, Rubson Natal Ribeiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identifying potassium (K+) deficiency in plants has traditionally been a difficult and expensive process. Traditional methods involve inspecting leaves for symptoms and conducting a laboratory analysis. These methods are not only time-consuming but also use toxic reagents. Additionally, the analysis is performed during the reproductive stage of growth, which does not allow enough time for corrective fertilization. Moreover, soybean growers do not have other tools to analyze the nutrition status during the earlier stages of development. Thus, this study proposes a quick approach for monitoring K+ in soybean crops using hyperspectral data through principal component analysis (PCA) and linear discriminant analysis (LDA) with a wavelength selection algorithm. The experiment was carried out at the Brazilian National Soybean Research Center in the 2017–2018, 2018–2019, and 2019–2020 soybean crop seasons, at the stages of development V4–V5, R1–R2, R3–R4, and R5.1–R5.3. Three treatments were evaluated that varied in K+ availability: severe potassium deficiency (SPD), moderate potassium deficiency (MPD), and an adequate supply of potassium (ASP). Spectral data were collected using an ASD Fieldspec 3 Jr. hyperspectral sensor. The results showed a variation in the leaf spectral signature based on the K+ availability, with SPD having higher reflectance in the visible region due to a lower concentration of pigments. PCA explained 100% of the variance across all stages and seasons, making it possible to distinguish SPD at an early development stage. LDA showed over 70% and 59% classification accuracies for discriminating a K+ deficiency in the simulation and validation stages. This study demonstrates the potential of the method as a rapid nondestructive and accurate tool for identifying K+ deficiency in soybean leaves.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16111900