Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ 17 O) of atmospheric nitrate
We report the first measurements of the oxygen isotope anomaly of atmospheric inorganic nitrate from the Arctic. Nitrate samples and complementary data were collected at Alert, Nunavut, Canada (82°30 ' N, 62°19 ' W) in spring 2004. Covering the polar sunrise period, characterized by the oc...
Gespeichert in:
Veröffentlicht in: | Atmospheric chemistry and physics 2007-03, Vol.7 (5), p.1451-1469 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the first measurements of the oxygen isotope anomaly of atmospheric inorganic nitrate from the Arctic. Nitrate samples and complementary data were collected at Alert, Nunavut, Canada (82°30 ' N, 62°19 ' W) in spring 2004. Covering the polar sunrise period, characterized by the occurrence of severe boundary layer ozone depletion events (ODEs), our data show a significant correlation between the variations of atmospheric ozone (O3) mixing ratios and Δ17O of nitrate (Δ17O(NO−3)). This relationship can be expressed as: Δ17O(NO−3)/‰, =(0.15±0.03)×O3/(nmol mol–1)+(29.7±0.7), with R2=0.70(n=12), for Δ17O(NO−3) ranging between 29 and 35 ‰. We derive mass-balance equations from chemical reactions operating in the Arctic boundary layer, that describe the evolution of Δ17O(NO−3) as a function of the concentrations of reactive species and their isotopic characteristics. Changes in the relative importance of O3, RO2 and BrO in the oxidation of NO during ODEs, and the large isotope anomalies of O3 and BrO, are the driving force for the variability in the measured Δ17O(NO−3) . BrONO2 hydrolysis is found to be a dominant source of nitrate in the Arctic boundary layer, in agreement with recent modeling studies. |
---|---|
ISSN: | 1680-7324 1680-7316 1680-7324 |
DOI: | 10.5194/acp-7-1451-2007 |