Direct supercritical angle localization microscopy for nanometer 3D superresolution

3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-02, Vol.12 (1), p.1180-1180, Article 1180
Hauptverfasser: Dasgupta, Anindita, Deschamps, Joran, Matti, Ulf, Hübner, Uwe, Becker, Jan, Strauss, Sebastian, Jungmann, Ralf, Heintzmann, Rainer, Ries, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology. Supercritical angle localisation microscopy (SALM) allows the z-positions of single fluorophores to be extracted from the intensity of supercritical angle fluorescence. Here the authors improve the z-resolution of SALM, and report nanometre isotropic localisation precision on DNA origami structures.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21333-x