On the origin of the controversial electrostatic field effect in superconductors
Superconducting quantum devices offer numerous applications, from electrical metrology and magnetic sensing to energy-efficient high-end computing and advanced quantum information processing. The key elements of quantum circuits are (single and double) Josephson junctions controllable either by elec...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-05, Vol.12 (1), p.2747-2747, Article 2747 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconducting quantum devices offer numerous applications, from electrical metrology and magnetic sensing to energy-efficient high-end computing and advanced quantum information processing. The key elements of quantum circuits are (single and double) Josephson junctions controllable either by electric current or magnetic field. The voltage control, commonly used in semiconductor-based devices via the electrostatic field effect, would be far more versatile and practical. Hence, the field effect recently reported in superconducting devices may revolutionise the whole field of superconductor electronics provided it is confirmed. Here we show that the suppression of the critical current attributed to the field effect, can be explained by quasiparticle excitations in the constriction of superconducting devices. Our results demonstrate that a miniscule leakage current between the gate and the constriction of devices perfectly follows the Fowler-Nordheim model of electron field emission from a metal electrode and injects quasiparticles with energies sufficient to weaken or even suppress superconductivity.
A recent report on electrostatic field effect in superconducting devices provides a high potential for advanced quantum technology, but it remains controversial. Here, the authors report that the suppression of critical current, which was attributed to the field effect, can instead be explained by quasiparticle excitations in the constriction of superconducting devices. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-22998-0 |