A combined strategy for the overproduction of complex ergot alkaloid agroclavine
Microbial cell factories (MCFs) and cell-free systems (CFSs) are generally considered as two unrelated approaches for the biosynthesis of biomolecules. In the current study, two systems were combined together for the overproduction of agroclavine (AC), a structurally complex ergot alkaloid. The whol...
Gespeichert in:
Veröffentlicht in: | Synthetic and systems biotechnology 2022-12, Vol.7 (4), p.1126-1132 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial cell factories (MCFs) and cell-free systems (CFSs) are generally considered as two unrelated approaches for the biosynthesis of biomolecules. In the current study, two systems were combined together for the overproduction of agroclavine (AC), a structurally complex ergot alkaloid. The whole biosynthetic pathway for AC was split into the early pathway and the late pathway at the point of the FAD-linked oxidoreductase EasE, which was reconstituted in an MCF (Aspergillus nidulans) and a four-enzyme CFS, respectively. The final titer of AC of this combined system is 1209 mg/L, which is the highest one that has been reported so far, to the best of our knowledge. The development of such a combined route could potentially avoid the limitations of both MCF and CFS systems, and boost the production of complex ergot alkaloids with polycyclic ring systems. |
---|---|
ISSN: | 2405-805X 2405-805X |
DOI: | 10.1016/j.synbio.2022.08.003 |