An experiment on an automated literature survey of data-driven speech enhancement methods

The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 117 articles on data-driven speech enhancem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta acustica 2024, Vol.8 (2), p.2
Hauptverfasser: dos Santos, Arthur, Pereira, Jayr, Nogueira, Rodrigo, Masiero, Bruno, Tavallaey, Shiva Sander, Zea, Elias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 117 articles on data-driven speech enhancement methods. The main objective is to evaluate the capabilities and limitations of the model in providing accurate responses to specific queries about the papers selected from a reference human-based survey. While we see great potential to automate literature surveys in acoustics, improvements are needed to address technical questions more clearly and accurately.
ISSN:2681-4617
1610-1928
2681-4617
1861-9959
DOI:10.1051/aacus/2023067