Ada-LT IP: Functional Discriminant Analysis of Feature Extraction for Adaptive Long-Term Wi-Fi Indoor Localization in Evolving Environments

Wi-Fi fingerprint-based indoor localization methods are effective in static environments but encounter challenges in dynamic, real-world scenarios due to evolving fingerprint patterns and feature spaces. This study investigates the temporal variations in signal strength over a 25-month period to enh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-08, Vol.24 (17), p.5665
Hauptverfasser: Hailu, Tesfay Gidey, Guo, Xiansheng, Si, Haonan, Li, Lin, Zhang, Yukun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wi-Fi fingerprint-based indoor localization methods are effective in static environments but encounter challenges in dynamic, real-world scenarios due to evolving fingerprint patterns and feature spaces. This study investigates the temporal variations in signal strength over a 25-month period to enhance adaptive long-term Wi-Fi localization. Key aspects explored include the significance of signal features, the effects of sampling fluctuations, and overall accuracy measured by mean absolute error. Techniques such as mean-based feature selection, principal component analysis (PCA), and functional discriminant analysis (FDA) were employed to analyze signal features. The proposed algorithm, Ada-LT IP, which incorporates data reduction and transfer learning, shows improved accuracy compared to state-of-the-art methods evaluated in the study. Additionally, the study addresses multicollinearity through PCA and covariance analysis, revealing a reduction in computational complexity and enhanced accuracy for the proposed method, thereby providing valuable insights for improving adaptive long-term Wi-Fi indoor localization systems.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24175665