Математическая модель классификатора объектов на основе байесовского подхода

Утверждается, что первостепенное значение в решении задачи классификации занимают: нахождение условий разбиения генеральной совокупности на классы, определение качества такого расслоения и верификация модели классификатора. Рассмотрена математическая модель нерандомизированного классификатора призна...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatika i avtomatizaciâ (Online) 2020-12, Vol.19 (6), p.1166-1197
Hauptverfasser: Aleksandr Aleksandrovich Batenkov, Kirill Aleksandrovich Batenkov, Andrey Gennadievich Bogachev, Vladislav Vladimirovich Mishin
Format: Artikel
Sprache:eng ; rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Утверждается, что первостепенное значение в решении задачи классификации занимают: нахождение условий разбиения генеральной совокупности на классы, определение качества такого расслоения и верификация модели классификатора. Рассмотрена математическая модель нерандомизированного классификатора признаков, полученных без учителя, когда априори не задается число классов, а лишь устанавливается его верхняя граница. Математическая модель приведена в виде постановки минимаксной условной экстремальной задачи и представляет собой задачу поиска матрицы принадлежности объектов к какому-либо классу. В основе разработки классификатора признаков находится синтез двумерной плотности вероятностей в пространстве координат: классы – объекты. С помощью обобщенных функций вероятностная задача поиска минимума Байесовского риска сведена к детерминированной задаче на множестве нерандомизированных классификаторов. Вместе с тем использование специально введенных ограничений фиксирует нерандомизированные правила принятия решений и погружает целочисленную задачу нелинейного программирования в общую непрерывную нелинейную задачу. Для корректного синтеза классификатора необходимы дисперсионная кривая изотропной выборки и характеристики качества классификации в зависимости от суммарной внутриклассовой и межклассовой дисперсии. Задача классификации может быть интерпретирована как частная задача теории катастроф. В условиях ограниченных исходных данных найден минимаксный функционал, отражающий качество классификации при квадратичной функции потерь. Математическая модель представлена в виде задачи целочисленного нелинейного программирования и приведена с помощью полиномиальных ограничений к виду общей задачи нелинейного непрерывного программирования. Найдены необходимые условия расслоения на классы. Эти условия могут быть использованы как достаточные при проверке гипотезы о существовании классов.
ISSN:2713-3192
2713-3206
DOI:10.15622/ia.2020.19.6.2