Effects of different enzyme extraction methods on the properties and prebiotic activity of soybean hull polysaccharides

In this study, five different processes, including hot water (HW-ASP), single enzyme (cellulase, pectinase and papain; C-ASP, PE-ASP, and P-ASP), and compound-enzyme (cellulose: pectinase: papain = 3:3:1; CE-ASP) for the extraction of soybean hull polysaccharides (ASPs) were employed, and the charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2022-11, Vol.8 (11), p.e11053-e11053, Article e11053
Hauptverfasser: Song, Hong, Zhang, Zunqin, Li, Yixue, Zhang, Ying, Yang, Lina, Wang, Shengnan, He, Yutang, Liu, Jun, Zhu, Danshi, Liu, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, five different processes, including hot water (HW-ASP), single enzyme (cellulase, pectinase and papain; C-ASP, PE-ASP, and P-ASP), and compound-enzyme (cellulose: pectinase: papain = 3:3:1; CE-ASP) for the extraction of soybean hull polysaccharides (ASPs) were employed, and the characterization and prebiotics activity of five polysaccharides were analyzed. These polysaccharides possessed different primary structural characteristics, including molecular weight distribution, monosaccharide composition, chemical composition, surface morphology, potential particle size, etc., while similar functional groups. In vitro digestibility assay indicated that C-ASP had strong resistance to gastric juice hydrolysis and α-amylase as compared with HW-ASP. Furthermore, C-ASP elevated the acidifying activity and promoted the growth of probiotics (Lactobacillus paracasei, Lactobacillus rhamnosus, and Lactobacillus acidophilus) during the fermentation (p < 0.05). C-ASP improved the levels of total short-chain fatty acids (SCFAs) and had better prebiotic activity than HW-ASP (p < 0.05). These findings denote that enzyme-assisted polysaccharides extracted from soybean hulls have the potential to be served as novel probiotics. Soybean hulls polysaccharides; Digestibility; Probiotics; SCFAs.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2022.e11053