Quantification of blood-brain barrier permeability by dynamic contrast-enhanced NIRS

The blood-brain barrier (BBB) is integral to maintaining a suitable microenvironment for neurons to function properly. Despite its importance, there are no bedside methods of assessing BBB disruption to help guide management of critical-care patients. The aim of this study was to demonstrate that dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-05, Vol.7 (1), p.1702-8, Article 1702
Hauptverfasser: Milej, Daniel, Abdalmalak, Androu, Desjardins, Lise, Ahmed, Hassaan, Lee, Ting-Yim, Diop, Mamadou, Lawrence, Keith St
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The blood-brain barrier (BBB) is integral to maintaining a suitable microenvironment for neurons to function properly. Despite its importance, there are no bedside methods of assessing BBB disruption to help guide management of critical-care patients. The aim of this study was to demonstrate that dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) can quantify the permeability surface-area product (PS) of the BBB. Experiments were conducted in rats in which the BBB was opened by image-guided focused ultrasound. DCE-NIRS data were acquired with two dyes of different molecular weight, indocyanine green (ICG, 67 kDa) and 800CW carboxylate (IRDye, 1166 Da), and PS maps were generated by DCE computer tomography (CT) for comparison. Both dyes showed a strong correlation between measured PS values and sonication power (R 2  = 0.95 and 0.92 for ICG and IRDye respectively), and the PS values for IRDye were in good agreement with CT values obtained with a contrast agent of similar molecular weight. These proof-of-principle experiments demonstrate that DCE NIRS can quantify BBB permeability. The next step in translating this method to critical care practice will be to adapt depth sensitive methods to minimize the effects of scalp contamination on NIRS PS values.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-01922-x