Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module

In this work, a modeling and experimental study of a new thermoelectric cooler–thermoelectric generator (TEC-TEG) module is investigated. The studied module is composed of TEC, TEG and total system heatsink, all connected thermally in series. An input voltage (1–5 V) passes through the TEC where the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-03, Vol.11 (3), p.576
Hauptverfasser: Teffah, Khaled, Zhang, Youtong, Mou, Xiao-long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a modeling and experimental study of a new thermoelectric cooler–thermoelectric generator (TEC-TEG) module is investigated. The studied module is composed of TEC, TEG and total system heatsink, all connected thermally in series. An input voltage (1–5 V) passes through the TEC where the electrons by means of Peltier effect entrain the heat from the upper side of the module to the lower one creating temperature difference; TEG plays the role of a partial heatsink for the TEC by transferring this waste heat to the total system heatsink and converting an amount of this heat into electricity by a phenomenon called Seebeck effect, of the thermoelectric modules. The performance of the TEG as partial heatsink of TEC at different input voltages is demonstrated theoretically using the modeling software COMSOL Multiphysics. Moreover, the experiment validates the simulation result which smooths the path for a new manufacturing thermoelectric cascade model for the cooling and the immediate electric power generation.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11030576