Baby skyrmions in Chern ferromagnets and topological mechanism for spin-polaron formation in twisted bilayer graphene

The advent of moiré materials has galvanized interest in the nature of charge carriers in topological bands. In contrast to conventional materials with electron-like charge carriers, topological bands allow for more exotic possibilities where charge is carried by nontrivial topological textures, suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-10, Vol.13 (1), p.6245-6245, Article 6245
Hauptverfasser: Khalaf, Eslam, Vishwanath, Ashvin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advent of moiré materials has galvanized interest in the nature of charge carriers in topological bands. In contrast to conventional materials with electron-like charge carriers, topological bands allow for more exotic possibilities where charge is carried by nontrivial topological textures, such as skyrmions. However, the real-space description of skyrmions is ill-suited to address the limit of small skyrmions and to account for momentum-space band features. Here, we develop a momentum-space approach to study the formation of the smallest skyrmions – spin polarons, formed as bound states of an electron and a spin flip – in topological ferromagnets. We show that, quite generally, there is an attraction between an electron and a spin flip that is purely topological in origin, promoting the formation of spin polarons. Applying our results to twisted bilayer graphene, we identify a range of parameters where spin polarons are formed and discuss their possible experimental signatures. In conventional materials, charge carriers are electron-like quasiparticles, but topological bands allow for more exotic possibilities. Here, the authors predict that in the Chern-ferromagnet phase of twisted bilayer graphene charge is carried by spin polarons, bound states of an electron and a spin flip.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-33673-3