Devil's staircase transition of the electronic structures in CeSb
Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil’s staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magn...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-06, Vol.11 (1), p.2888-2888, Article 2888 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil’s staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magnetostructures sequentially appear below the Néel temperature. An evolution of the low-energy electronic structure going through the devil’s staircase is of special interest, which has, however, been elusive so far despite 40 years of intense research. Here, we use bulk-sensitive angle-resolved photoemission spectroscopy and reveal the devil’s staircase transition of the electronic structures. The magnetic reconstruction dramatically alters the band dispersions at each transition. Moreover, we find that the well-defined band picture largely collapses around the Fermi energy under the long-periodic modulation of the transitional phase, while it recovers at the transition into the lowest-temperature ground state. Our data provide the first direct evidence for a significant reorganization of the electronic structures and spectral functions occurring during the devil’s staircase.
CeSb undergoes a devil’s staircase sequence of extremely long-period modulations of the magnetically ordered 4f states. Here, the authors visualize how the devil’s staircase ordering impacts mobile electrons and collapses the well-defined band picture at the Fermi energy. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-16707-6 |