Modeling Cascading Failures in Stock Markets by a Pretopological Framework

We introduce a computational framework, namely, a pretopological construct, for mining stock prices’ time series in order to expand a set of stocks by adding other stocks whose average correlations with the set are above a threshold. We increase the threshold with the set’s size to verify group impa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of computer science 2021-02, Vol.8 (1), p.23-38
Hauptverfasser: Nguyen, Ngoc Kim Khanh, Bui, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a computational framework, namely, a pretopological construct, for mining stock prices’ time series in order to expand a set of stocks by adding other stocks whose average correlations with the set are above a threshold. We increase the threshold with the set’s size to verify group impact in financial crises. This approach is tested by a consecutive expansion process started from a stock of Merrill Lynch & Co., and a consecutive contraction process of the rest. The test’s results and the comparison to graph theory show that our model and pretopology theory are helpful to study stock markets.
ISSN:2196-8888
2196-8896
DOI:10.1142/S2196888821500019