AI prediction model for endovascular treatment of vertebrobasilar occlusion with atrial fibrillation

Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2025-02, Vol.8 (1), p.78-9, Article 78
Hauptverfasser: Huang, Zhi-Xin, Alexandre, Andrea M., Pedicelli, Alessandro, He, Xuying, Hong, Quanlong, Li, Yongkun, Chen, Ping, Cai, Qiankun, Broccolini, Aldobrando, Scarcia, Luca, Abruzzese, Serena, Cirelli, Carlo, Bergui, Mauro, Romi, Andrea, Kalsoum, Erwah, Frauenfelder, Giulia, Meder, Grzegorz, Scalise, Simona, Ganimede, Maria Porzia, Bellini, Luigi, Del Sette, Bruno, Arba, Francesco, Sammali, Susanna, Salcuni, Andrea, Vinci, Sergio Lucio, Cester, Giacomo, Roveri, Luisa, Huang, Xianjun, Sun, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endovascular treatment (EVT) for vertebrobasilar artery occlusion (VBAO) with atrial fibrillation presents complex clinical challenges. This comprehensive multicenter study of 525 patients across 15 Chinese provinces investigated nuanced predictors beyond conventional metrics. While 45.1% achieved favorable outcomes at 90 days, our advanced machine learning approach unveiled subtle interaction effects among clinical variables not captured by traditional statistical methods. The predictive model distinguished high-risk subgroups by integrating multiple parameters, demonstrating superior prognostic precision compared to standard NIHSS-based assessments. Novel findings include nonlinear relationships between dyslipidemia, stroke severity, and functional recovery. The developed predictive algorithm (AUC 0.719 internally, 0.684 externally) offers a more sophisticated risk stratification tool, potentially guiding personalized treatment strategies in high-complexity VBAO patients with atrial fibrillation.
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-025-01478-5