Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia

Background Land use/cover (LULC) change is a dynamic and complex process that can be caused by many interacting processes ranging from various natural factors to socioeconomic dynamics . It exerts a strong influence on the structure, functions and dynamics of most landscapes. Monitoring and mapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Systems Research 2019-06, Vol.8 (1), p.1-30, Article 21
Hauptverfasser: Yesuph, Asnake Yimam, Dagnew, Amare Bantider
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Land use/cover (LULC) change is a dynamic and complex process that can be caused by many interacting processes ranging from various natural factors to socioeconomic dynamics . It exerts a strong influence on the structure, functions and dynamics of most landscapes. Monitoring and mapping of LULC dynamics are crucial as changes observed reflect the status of the environment and provide input parameters for optimum natural resources management and utilization. The objective of this study was to quantify the spatio-temporal LULC dynamics using satellite image coupled with local perceptions in the Gedalas watershed of the Blue Nile Basin, North Eastern Ethiopia. Maximum likelihood supervised image classification technique were employed to classify LULC categories. After ensuring acceptable accuracy value for each classified image, image differencing approach was used to detect and quantify LULC transitions of the area. Classification results were validated with the aid of field work, topographic maps, and high resolution Google earth images supplemented with other available thematic data sets. The results The result demonstrated seven major LULC classes and the overall scenario presented by the study reveals that the watershed has experienced quite visible LULC transitions that seem to be continued in the future due to eternal anthropogenic activities and natural factors. The study ascertain that though there was change in all land use types, the major change detected was a consistent expansion of farmland/settlements area mainly at the expense of Afro/sub Afro alpine vegetation areas. On the contrary, Afro/sub Afro alpine vegetation showed a consistent net loss of over the study of periods. The findings also highlighted that transitions were ultimately driven by the interplay of biophysical, socioeconomic and institutional factors. Perceptions of the local communities on the LULC change substantially agree with data from satellite images. This implies that the ongoing rural land administration and natural resource conservation and management strategies could not effectively address the expansion of agricultural land towards fragile and marginal lands in the study area. Conclusion The study concludes that if these trends of crop lands expansion allowed continuing, sooner or later there will be no Afro/sub Afro alpine vegetation will remain. Therefore, local governments should strive to expand SLM activities on such mountain ecosystems and other marg
ISSN:2193-2697
2193-2697
DOI:10.1186/s40068-019-0148-y