Recommendation Algorithm Based on Heterogeneous Information Network and Attention Mechanism

Heterogeneous information networks (HINs) contain a rich network structure and semantic information, which makes them commonly used in recommendation systems. However, most of the existing HIN-based recommendation systems rely on meta-paths for information extraction, lack meta-path information supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-01, Vol.14 (1), p.353
Hauptverfasser: Li, Li, Gui, Xiangquan, Lv, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterogeneous information networks (HINs) contain a rich network structure and semantic information, which makes them commonly used in recommendation systems. However, most of the existing HIN-based recommendation systems rely on meta-paths for information extraction, lack meta-path information supplements, and rarely learn complex structure information in heterogeneous graphs. To address these issues, we develop a novel recommendation algorithm that integrates the attention mechanism, meta-paths, and neighbor node information (AMNRec). In the heterogeneous information network, the missing information of the meta-path is supplemented by extracting the information of users and items’ neighbor nodes. The rich interactions between nodes are captured through convolution, and the embedded representation of nodes and meta-paths is obtained through the attention mechanism. TOP-N recommendation is completed by combining users, items, neighbor nodes, and meta-paths. Experiments on three public datasets show that AMNRec not only has the best recommendation performance but also has good interpretability of the recommendation results compared with the six recommendation benchmark algorithms.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14010353